Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618956

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Carcinoma, Renal Cell/genetics , Cell Transformation, Neoplastic , Kidney , Kidney Neoplasms/genetics , Tumor Microenvironment , Von Hippel-Lindau Tumor Suppressor Protein/genetics
2.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36747715

ABSTRACT

Inborn Errors of Metabolism (IEM) and Immunity (IEI) are Mendelian diseases in which complex phenotypes and patient rarity can limit clinical annotations. Few genes are assigned to both IEM and IEI, but immunometabolic demands suggest functional overlap is underestimated. We applied CRISPR screens to test IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable crossover. Analysis of IEM showed N-linked glycosylation and the de novo hexosamine synthesis enzyme, Gfpt1 , are critical for T cell expansion and function. Interestingly, Gfpt1 -deficient T H 1 cells were more affected than T H 17 cells, which had increased Nagk for salvage UDP-GlcNAc synthesis. Screening IEI genes showed the transcription factor Bcl11b promotes CD4 + T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. These data illustrate a high degree of functional overlap of IEM and IEI genes and point to potential immunometabolic mechanisms for a previously unappreciated set of these disorders. HIGHLIGHTS: Inborn errors of immunity and metabolism have greater overlap than previously known Gfpt1 deficiency causes an IEM but also selectively regulates T cell subset fate Loss of Bcl11b causes a T cell deficiency IEI but also harms mitochondrial function Many IEM may have immune defects and IEI may be driven by metabolic mechanisms.

3.
Cancer Res ; 81(21): 5477-5490, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34301759

ABSTRACT

Castration-resistant prostate cancer (CRPC) is a lethal stage of disease in which androgen receptor (AR) signaling is persistent despite androgen deprivation therapy (ADT). Most studies have focused on investigating cell-autonomous alterations in CRPC, while the contributions of the tumor microenvironment are less well understood. Here we sought to determine the role of tumor-associated macrophages in CRPC, based upon their role in cancer progression and therapeutic resistance. In a syngeneic model that reflected the mutational landscape of CRPC, macrophage depletion resulted in a reduced transcriptional signature for steroid and bile acid synthesis, indicating potential perturbation of cholesterol metabolism. As cholesterol is the precursor of the five major types of steroid hormones, we hypothesized that macrophages were regulating androgen biosynthesis within the prostate tumor microenvironment. Macrophage depletion reduced androgen levels within prostate tumors and restricted AR nuclear localization in vitro and in vivo. Macrophages were also cholesterol-rich and were able to transfer cholesterol to tumor cells in vitro. AR nuclear translocation was inhibited by activation of liver X receptor (LXR)-ß, the master regulator of cholesterol homeostasis. Consistent with these data, macrophage depletion extended survival during ADT and the presence of macrophages correlated with therapeutic resistance in patient-derived explants. Taken together, these findings support the therapeutic targeting of macrophages in CRPC. SIGNIFICANCE: These results suggest that macrophage-targeted therapies can be combined with androgen deprivation therapy to treat patients with prostate cancer by limiting cholesterol bioavailability and the production of intratumoral androgens.See related commentary by Al-Janabi and Lewis, p. 5399.


Subject(s)
Androgen Antagonists/pharmacology , Cholesterol/metabolism , Drug Resistance, Neoplasm/genetics , Macrophages/metabolism , Prostatic Neoplasms/drug therapy , Tumor Microenvironment , Animals , Apoptosis , Cell Proliferation , Humans , Male , Mice , Mice, Knockout , PTEN Phosphohydrolase/physiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/physiology , Xenograft Model Antitumor Assays
4.
BMC Res Notes ; 14(1): 230, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103082

ABSTRACT

OBJECTIVE: In order to isolate and identify bacteria that produce potentially novel bactericidal/bacteriostatic compounds, two ponds on the campus of the Rochester Institute of Technology (RIT) were targeted as part of a bioprospecting effort. RESULTS: One of the unique isolates, RIT 452 was identified as Exiguobacterium sp. and subjected to whole-genome sequencing. The genome was assembled and in silico analysis was performed to predict the secondary metabolite gene clusters, which suggested the potential of Exiguobacterium RIT452 for producing antibiotic compounds. Extracts of spent growth media of RIT452 were active in disc diffusion assays performed against four reference strains, two Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. aureus ATCC 25923). Differential extraction and liquid chromatography was used to fractionate the extracts. Efforts to identify and elucidate the structure of the active compound(s) are still ongoing.


Subject(s)
Anti-Bacterial Agents , Exiguobacterium , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli , Gram-Negative Bacteria , Microbial Sensitivity Tests , Staphylococcus aureus
5.
BMC Res Notes ; 13(1): 370, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746897

ABSTRACT

OBJECTIVE: There is an urgent need for the discovery and/or development of novel antibiotics. We report an exploration of "slow"-growing bacteria, which can be difficult to isolate using rich media as they are usually outcompeted by "fast"-growing bacteria, as potential sources of novel antimicrobials. RESULTS: Pseudomonas sp. RIT 623 was isolated using pond water agar from a pond located on the campus of the Rochester Institute of Technology (RIT). The genome was sequenced and analyzed for potential secondary metabolite gene clusters. Bioinformatics analysis revealed 14 putative gene clusters predicted to encode pathways for the anabolism of secondary metabolites. Ethyl acetate extracts from spent growth medium of Pseudomonas sp. RIT 623 were tested against two Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. aureus ATCC 25923) type strains to assess antibiotic activity. The antibiotic assays demonstrated that extracts of Pseudomonas sp. RIT 623 were able to inhibit the growth of the four strains. The active compound was separated using diethyl ether in a multi-solvent extraction and reverse phase chromatography. The bioactive compound/s were subsequently eluted in two consecutive fractions corresponding to approximately 16-22% acetonitrile, indicative of polar compound/s.


Subject(s)
Anti-Bacterial Agents , Pseudomonas , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli , Microbial Sensitivity Tests , Pseudomonas/genetics , Staphylococcus aureus , Technology
6.
Microbiol Resour Announc ; 9(6)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32029553

ABSTRACT

Here, we report the isolation, identification, and whole-genome sequences of 12 bacterial strains associated with four mushroom species. The study was done as an inquiry-based exercise in an undergraduate genomics course (BIOL 340) in the Thomas H. Gosnell School of Life Sciences at the Rochester Institute of Technology.

7.
Article in English | MEDLINE | ID: mdl-30533762

ABSTRACT

Exiguobacterium sp. RIT 452 is of biotechnological importance given its potential for antibiotic production. Bactericidal activity was detected using spent medium extract in a disk diffusion assay against Escherichia coli. The genome consists of 3,246 protein-coding sequences, including a variety of gene clusters involved in the synthesis of antibacterial compounds.

8.
J Genomics ; 6: 117-121, 2018.
Article in English | MEDLINE | ID: mdl-30310525

ABSTRACT

Six endophytic bacteria were isolated from Saccharum sp (sugarcane) grown in the parish of Westmoreland on the island of Jamaica located in the West Indies. Whole genome sequence and annotation of the six bacteria show that three were from the genus Pseudomonas and the other three were from the genera Pantoea, Pseudocitrobacter, and Enterobacter. A scan of each genome using the antibiotics and secondary metabolite analysis shell (antiSMASH4.0) webserver showed evidence that the bacteria were able to produce a variety of secondary metabolites. In addition, we were able to show that one of the organisms, Enterobacter sp RIT418 produces N-acyl-homoserine lactones (AHLs), which is indicative of cell-cell communication via quorum sensing (QS).

SELECTION OF CITATIONS
SEARCH DETAIL
...